The Effect of Δ^{12}PGJ2 and PPAR γ Agonist on the Proliferation and Differentiation of Osteoblast

Jeong-Mi Heo1, Kyoung- Wha Kim1, Kyoung-Wook Chung1, Hye-Joon Lee1, In-Chul Rhyu1, Young Ku1,2, Chong-Pyoung Chung1,2*

1Department of Periodontology, College of Dentistry, Seoul National University
2Intellectual Biointerface Engineering Center, KOSEF

I. Introduction

Inflammatory periodontal disease is the most important cause of tooth loss in adults. Although multifactorial, the pathogenesis of periodontitis involves the presence of the plaque-retentive factors that initiates local inflammatory reaction in a predisposed host, thus provoking edema, cell influx, and release of inflammatory mediators. Among these, eicosanoids, mainly prostaglandins, seem to be important candidates in causing tissue destruction and ultimately, alveolar bone loss. Prostaglandins (PG) are 20-carbon essential fatty acids, a family of biologically active molecules and synthesized in most tissues.

Early studies showed that PGs are important mediators of the inflammatory process and bone resorption, especially PGE$_2$ is the most potent agent, PGF$_2$ are detected in significantly high levels in inflamed gingival tissues, and up-regulate the production of the inflammatory cytokine, MMP-1.

However, increased bone formation was also confirmed in animal studies by both systemic and local injection of PGE$_2$, and it is through the divergent actions on growth and differentiation of osteoblastic cells.

PGD$_2$ is a early anti-inflammatory signal in experimental colitis, and stimulates calcification of human osteoblastic cells, PGJ$_2$ is formed from PGD$_2$ in vivo and PGJ$_2$ can be rapidly converted to Δ^{12}PGJ$_2$ in the presence of plasma.

Unlike other PGs which act through plasma membrane receptors, Δ^{12}PGJ$_2$ is a high affinity ligand to peroxisome proliferator-activated receptor gamma (PPAR γ). PPARs are ligand-activated transcription factors belonging to the nuclear receptor family. Although adipose tissue has been recognized as a principle site of expression of PPAR γ, it is expressed at lower levels in many other tissues and cell types, including cells of the monocyte/macrophage lineage, neutrophils, T lymphocyte, and chondrocytes. Recent studies in different cell types suggest that PPAR ligands not only regulate lipid and glucose homeostasis, but may also mitigate...
the inflammatory process.

The purpose of this study is to examine the expression of PPARγ and the effect of Δ^{12} PGJ$_2$ on the proliferation and differentiation of human osteoblastic Saos-2 cell line and mouse osteoblastic MC3T3-E1 cells in vitro to investigate the function of Δ^{12}PGJ$_2$ on ossification.

II. Review of Literature

1. Prostaglandins (PG)

1) Biosynthesis

Prostaglandins (PG) are 20-carbon essential fatty acids that contain three, four, or five double bonds with a cyclopentane ring, a family of biologically active molecules and synthesized in most tissues. The predominant precursor is arachidonic acid, cleaved from phospholipids in the lipid bilayer of cells. The first step in the formation of PGs involves intracellular release of arachidonic acid from plasma membrane phospholipids via the action of phospholipase A$_2$. The key step in the formation of PGs is the conversion of arachidonic acid by the cyclooxygenase and peroxidase activities of a single enzyme, PGH synthase (also called PG synthase or simply cyclooxygenase). One enzymatic action of COX is to convert arachidonic acid to PGG$_2$, and the other action is to reduce PGG$_2$ to PGH$_2$ by its peroxidase activity$^{1-2}$, PGH$_2$ is converted to PGE$_2$, PGD$_2$, PGF$_2\alpha$ prostacyclin (PGI$_2$), and thromboxane by tissue-specific isomerase and reductase.

There are two forms of COX, constitutive form (COX-1) and inducible form (COX-2). 2 isozymes are encoded by different genes3, and expression of COX-2 is induced by proinflammatory cytokines, mitogens, lipopolysaccharides4 and mechanical tension force5.

2) PG receptors

PGs have complex actions on bone metabolism that depend on interactions with different types and subtypes of receptors. Physiological actions of E,D, and F series prostaglandins are mediated by binding to specific high affinity trans-membrane G-protein coupled prostanoid receptors. For PGE$_2$, there are four classes of receptors: EP1, which increases the intracellular Ca$^{2+}$ concentration; EP2 and EP4, which increases the intracellular cAMP levels; and EP3, which mainly decreases the intracellular cAMP concentration6. Suda et al, reported that EP1, EP2, and EP4 are present in MC3T3-E1 cells, EP1 promotes cell growth, and EP2 and EP4 mediate differentiation of osteoblast7. In human osteoblasts, the presence of DP, EP4, IP, FP and TP receptor mRNA was revealed in primary culture experiment8.

On the other hand, the actions of cyclopentenone prostaglandins PGA$_2$, PGA$_1$, and PGJ$_2$ result from their interaction with other cellular target proteins, Δ^{12}PGJ$_2$ is a high affinity ligand for the nuclear receptor PPARγ9.

3) Role of PGs on bone resorption

Early in vitro work showed that PGs are important mediators of the inflammatory process and bone resorption10, prostaglandins of the E series are the most potent, while PGFs are somewhat less potent.

Akatsu et al, showed in their in vitro assay systems that PGE$_2$ is involved in the mechanism of IL-1 mediated osteoclast-like cell formation, and its direct interaction between osteoclast progenitors and osteoblastic cells is required in the osteoclast recruitment induced by PGE$_2$ and IL-1. 11 Gardner et al, reported IL-6 as another agonist to PG induced bone resorption in their neonatal mouse parietal bone culture study12.

This led to clinical investigations of their possible role in in vivo conditions in which there was local-
ized bone resorption associated inflammation like periodontal disease. Elevated level of PG are detected in the crevicular fluid of periodontitis patients, and it has been associated with increased severity of the disease15, and COX inhibition prevented alveolar bone loss in experimental periodontal disease model160.

However, when comparison were made in some studies with prostanoid levels in gingival crevicular fluid, there was poor correlation between PG concentration and the stage of disease, indicating other resorbing factors, not sensitive to the antiprostaglandins were involved17-180.

4) Role of PGs on bone formation

Many studies indicate PG is also a powerful bone forming agent, Yoshiiuki et al, first reported stimulatory effect of PGs on the differentiation of osteoblastic clone MC3T3-E1 cells ; PGE\textsubscript{2} stimulated ALP activity in the cells in a dose-dependent fashion and PGE\textsubscript{2} also increased cAMP content with the maximal effective concentration of 100 ng/ml190. In fetal rat calvarial cell culture study, 3 X 10-8 M PGE\textsubscript{2} induced a 2-fold increase in mineralized bone nodule formation and a 1.5-fold increase in alkaline phosphatase activity without affecting cell growth, suggesting that PGE\textsubscript{2} may increase the proportion of functional osteoblasts able to produce mineralized bone nodules in the population by stimulating differentiation during the post-confluent stage of rat calvarial cell culture.20 In assay system using a cultured cell from human femur explant, Koshihara et al, showed PGD\textsubscript{2} and its derivatives stimulate ALP activity and calcification unexpectedly, with potencies nearly equal to 1.25(OH)2D\textsubscript{3} at 10-8 M and suggested that the effective form is probably a metabolite, Δ^12PGJ\textsubscript{2}201. Later, Tasaki et al, reported that PGD\textsubscript{2} metabolite, Δ^12PGJ\textsubscript{2} enhanced transcription of type I collagen mRNA synthesis at 105 M using the same cultural system220.

Many in vivo studies also have shown that PGs are involved with increases in bone formation. In their series of extensive in vivo studies in rats, Jee et al, reported increased metaphyseal hard tissue and cortico-endosteal bone formation in growing rats,230 production of new cancellous bone in the axial skeleton of ovariectomized rats241, and increase of bone mass and activity of intracortical bone remodeling in intact and ovariectomized female rats25. While relatively high doses of PGE\textsubscript{2} were administrated in Jee et al,’s experiments, Yang et al, showed that a lower dose of PGE\textsubscript{2}, as low as 1 pmol/day for 2 weeks induced a greater response in bone formation without significant changes of metaphyseal cancellous bone tissue in the contralateral control limb260. Takagi et al, reported that subcutaneous administration of a slow-release preparation of PGD\textsubscript{2} not only prevented the ovariectomy-induced suppression of bone mineral density, but also augmented the steady increase in bone mineral density of the sham-operated rat27.

2. PGJ\textsubscript{2} : a member of the cyclopentenone prostaglandins

1) Biosynthesis and cellular target

The cyclopentenone prostaglandins PGA\textsubscript{2}, PGA\textsubscript{1}, and PGJ\textsubscript{2} are formed by dehydration within the cyclopentane ring of PGE\textsubscript{2}, PGE\textsubscript{1}, and PGD\textsubscript{2}, respectively. PGJ\textsubscript{2} was discovered by Fukushima and coworkers in the course of studies of antitumor activity of PGD\textsubscript{2}280. These investigators discovered that PGD\textsubscript{2} undergoes spontaneous dehydration in aqueous solutions to yield PGJ\textsubscript{2}, a compound known previously only as a synthetic prostanoid. In aqueous solutions containing serum albumin, PGJ\textsubscript{2} isomerizes to yield Δ^12PGJ\textsubscript{2}28. Further study demonstrated that Δ^12PGJ\textsubscript{2} had considerably more potent anti-tumor activity than the parent compound, PGD\textsubscript{2}, but had
very low activity or was inactive in bioassay for PGD2 such as inhibition of platelet aggregation and relaxation of rabbit stomach strip. These results suggested that the effect of 4-dPGJ2 was not mediated by binding to high affinity DP receptors, but by an unidentified cellular targets. Much excitement was generated in 1995 when this compound was found to be a high affinity ligand for the peroxisome proliferator-activated receptor (PPARγ) (31).

2) Influence on inflammation
It has been suggested that the locally produced 15 d-PGJ2 may function as a negative feedback regulator of inflammation by the inhibition of pro-inflammatory genes in activated macrophages (32). On the basis of transfection studies in macrophage-like cell lines, antagonism of the transcription factors AP-1, NF-κB, and STAT was implicated as the mechanism of the observed anti-inflammatory effects (33).

Azuma et al. reported that dPGJ2 inhibits LPS-induced IL-10 and IL-12 production by macrophages and the inhibition may be through PPARγ (34).

However, growing body of evidence has emerged that PGJ2 metabolites, in addition to the PPARγ activation, exerts also PPARγ-independent effects. Inhibition of inducible nitric-oxide synthase (35), TNF-α, IL-12 (36) production by PGJ2 in microglial cell and macrophage (37) does not appear to involve PPARγ because these actions were not mimicked by other specific PPARγ agonist, Boyault et al. reported that 15 d-PGJ2 was highly potent to counteract IL-1β effects in human chondrocytes by inhibiting NF-κB and AP-1 (activator protein-1) activation pathway through PPARγ-independent action, and suggested the possibility of 15 d-PGJ2 as a modulator of inflammatory disease, osteoarthritis (38). Some studies, however, indicated that 15d-PGJ2 can be a mediator of inflammatory response by PPARγ-dependent (39), and independent pathway (40-41).

3) Influence on cell cycle
15d-PGJ2 is recognized as a potent apoptotic and growth inhibitory factor. 4 d-PGJ2 effectively inhibited cell growth, caused a cell cycle arrest in G1 through a non-cAMP mediated mechanism (42). 15 d-PGJ2 is a potent apoptotic factor for human hepatic myofibroblasts, and 15 d-PGJ2-induced cell death is independent of PPARγ activation because PPARγ is not expressed in these cells. (43) Kondo et al. showed that cyclopentanone prostaglandins are potential inducers of intracellular oxidative stress in human neuroblastoma cells (SH-SY5Y) and suggested that it may serves as second messenger of the apoptotic effect (44). Details regarding the mechanism for antineoplastic activity remain to be determined.

3. PPARγ

1) Classification and tissue distribution
The peroxisome proliferator-activated receptors (PPARγ) are a family of transcriptional factors belong to the nuclear receptor superfamily that includes the estrogen receptors, thyroid hormone receptors, and glucocorticoid receptors. So far, three distinct PPARγ; termed α, δ (also called β, NUC-1 or FAAR) and γ, have been identified, each encoded by a separate gene and showing a distinct tissue distribution (45).

The PPARγ gene is transcribed into three PPARγ messenger RNA (mRNA) species, that is PPARγ1, PPARγ2, and PPARγ3, which are derived from alternative splicing and promoter usage (46). Although adipose tissue has been recognized as a principal site of expression of PPARγ2, PPARγ1 is expressed in many other tissue and cell types, including hepatocyte, fibroblasts, myocytes, breast and colony epithelial cells, human marrow precursors, monocyte/macrophage lineage, neutrophils, and T lymphocytes (47-50). PPARγ can be activated by naturally
occurring arachidonic acid metabolites derived from the cyclooxygenase pathway, such as $\text{J}^{12}\text{PGJ}_2$, 15 d-PGJ$_2$, but also by synthetic ligands such as thiazolidinediones, which are insulin sensitizers used as orally active antidiabetic agents52, or certain nonsteroidal antiinflammatory drugs (NSAIDs)53.

2) Function of PPAR γ

PPAR γ was originally characterized as a regulator of adipocyte differentiation and lipid metabolism54. But, recent studies in different cell types suggest that PPAR γ ligands may be important antiinflammatory agents55. Fahmi et al. reported that PPAR γ is present and functionally active in human chondrocytes, and PPAR γ ligands inhibit IL-1β-induced production of nitric-oxide and MMP-13 at the transcriptional level, probably through repression of NF-κB and AP-1 signaling56.

Few researches were undertaken about the role of PPAR γs in osteoblastic differentiation and proliferation. Czemił et al. recently reported that PPAR $\gamma 2$ stimulate adipocyte differentiation, suppress osteoblast differentiation in U-33/ $\gamma 2$ cells, a model bipotential mesenchymal progenitor cell line57. On the other hand, Jackson et al. demonstrated that activators of PPAR α, δ, and γ induced alkaline phosphatase activity, matrix calcification and the expression of osteoblast genes as determined by reverse transcriptase-polymerase chain reaction58. The precise role of PPAR γ on osteoblastic cells is therefore not fully elucidated.

III. Materials and methods

1. Cell culture and incubation with $\text{J}^{12}\text{PGJ}_2$ and ciglitazone

A human osteosarcoma cell line Saos-2 (ATCC, HTB 85) obtained from the American Type culture collection, and MC3T3-E1 osteoblasts (Riken, Japan) derived from a mouse calvaria, were grown to confluence in culture flask of 75 cm2 surface (Falcon, Oxnard, CA). Cell lines were incubated at 37°C in a humidified atmosphere containing 5 % CO$_2$ in air with 20 ml of minimum essential medium (α-MEM; Gibco, Grand Island, NY) supplemented with 10 % fetal bovine serum (FBS; Gibco NY) and 1 % penicillin-streptomycin solution (Gibco, NY).

When confluent monolayer was reached, the cells were enzymatically lifted from the dishes using 0.25 % trypsin and 4 mM EDTA (Gibco, Grand Island, NY). Aliquots of 20 μl of cell suspension were seeded into 24-well flat-bottomed tissue culture plates (Coming, New York, NY, USA) or 96-well multiplates at a density of 5 x 104 cells/well. The test groups were cultured with medium described above, except it contained 10$^{-5}$ - 10$^{-9}$ M of $\text{J}^{12}\text{PGJ}_2$ (Cayman Chemicals, Ann Arber, MI) or 10$^{-5}$ - 10$^{-9}$ M of ciglitazone (Biomol, Plymouth Meeting, MA). The medium was changed every 2-3 days. For mineralization assay, cell lines were cultured in 6-well multiplates with αMEM supplemented with 50 μg/ml ascorbic acid (Sigma, St Louis, MO) and 10 mM β-glycerophosphate (Sigma, MO).

2. Cell proliferation assay

Cell proliferation was measured at 1, 2, and 3 days. For measurement of cell proliferation, Saos-2 and MC3T3-E1 cells were cultured in 96-well multiplates. The effects of $\text{J}^{12}\text{PGJ}_2$, ciglitazone on the proliferation of these cells were determined by the tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) (Sigma) assay. Briefly, 50 μl of 0.2% MTT in phosphate buffered saline (PBS) was added to 200 ul of medium of each culture. After incubation for 4 h at 37°C, the medium was removed and the cells were dissolved in
DMSO. Then, the absorbance of lysates was measured at 540 nm.

3. Alkaline phosphatase activity

Production of alkaline phosphatase (ALPase) was measured spectroscopically at 2 days. After incubation, the adherent cells were removed from the wells by incubation of 1.0 ml of 0.25 % trypsin in 4 mM EDTA for 30 minutes at 37°C, washed with 0.5 ml of PBS, and centrifuged for 5 minute at 6,5 X 10 g.

The cell pellet was homogenized with 0.5 ml of double distilled water (DDW) and sonicated for 1 minute in ice, 0.1 ml of cell lysate were mixed with 0.1 ml of 0.1 M glycine-NaOH buffer, 0.1 ml of 15 mM para-nitrophenol phosphate (pNPP), 0.1 % triton X-100/saline and 0.1 ml of DDW. Each aliquots was incubated at 37°C for 30 minutes. After incubation, each tube was added 2,5 ml of 0,1 N NaOH and placed on ice. The production of para-nitrophenol (PNP) in the presence of ALPase was measured by monitoring light absorbance by the solution at 405 nm. The slope of absorbance versus time plot was used to calculate the ALPase activity.

4. RNA extraction and reverse transcriptase-polymerase chain reaction (RT-PCR)

1) RT-PCR for expression of PPARγ

Total RNA from cultured osteoblasts was isolated with the use of high pure RNA Isolation Kit (Roche Molecular Biochemicals, Mannheim, Germany) according to manufacturer's instruction. RT-PCR assays were carried out with the thermal cycler (Eppendorf).

Two micrograms of total RNA were reverse transcribed into complementary DNA (cDNA) with 2 units/ µl RT (AMV reverse transcriptase, Roche Molecular Biochemicals), 2,0 µl of 1 reaction buffer (100 mM Tris, 500 mM KCl ; pH 8,3), 4,0 µl of 5 mM MgCl₂, 2,0 µl of decoxynucleotide mix primer, 1,0 µl of RNAase inhibitor at 25°C for 10 minutes for annealing and then at 42°C for 60 minutes for reverse transcription resulting in cDNA synthesis. Following the 42°C incubation, the AMV reverse transcriptase is denatured by incubating the reaction at 99°C for 5 minutes and then cooling to 4°C for 5 minutes.

The resulting single stranded DNA is amplified using the reverse transcribed mixture containing 250 µM dNTP, 2 mM MgCl₂, 1 X volume of reaction buffer, and 0,5 unit of Taq polymerase (Roche) as a

<table>
<thead>
<tr>
<th>Table 1: Nucleotide sequences of the primers used for RT-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
</tr>
<tr>
<td>Human PPARγ (s)</td>
</tr>
<tr>
<td>(as)</td>
</tr>
<tr>
<td>Human type I collagen (s)</td>
</tr>
<tr>
<td>(as)</td>
</tr>
<tr>
<td>Human alkaline phosphatase (s)</td>
</tr>
<tr>
<td>(as)</td>
</tr>
<tr>
<td>Human osteopontin (s)</td>
</tr>
<tr>
<td>(as)</td>
</tr>
<tr>
<td>Human osteocalcin (s)</td>
</tr>
<tr>
<td>(as)</td>
</tr>
<tr>
<td>18S ribosomal RNA (s)</td>
</tr>
<tr>
<td>(as)</td>
</tr>
</tbody>
</table>
template with the specific oligonucleotide primers for human PPARγ (55) which were derived from known sequences (Table 1).

The PCR mixtures were incubated at 95°C for 1 minute, followed by 35 cycles each at 94°C for 30 seconds and 60°C for 1 minute, with a final elongation step at 60°C for 8 minutes. PCR product (10 μl/50 μl) reactions were separated on a 1.8 % agarose gel and stained with ethidium bromide.

2) Semi-quantitative RT-PCR for osteoblastic differentiation markers.

For quantitation of mRNA expression, primers for collagen type I (COL I), alkaline phosphatase (ALPase), osteopontin (OPN), osteocalcin (OCN), and 18s ribosomal RNA (rRNA) were used for reverse transcriptase-polymerase chain reaction (RT-PCR). Total RNA was isolated from cultures of Saos-2 cells and reverse transcribed to cDNA as described above. Then the cDNA was amplified with gene-specific primers, which were derived from known sequences (Table 1) by using AMV reverse transcriptase mixture (59-60).

The mRNA level of 18s ribosomal RNA (rRNA) was analyzed in the same samples as an amplification control. The amplification condition was 95°C (1 min) - 60°C (2 min) for 23 cycles, PCR products were electrophoresed onto a 2 % agarose gel containing ethidium bromide and visualized under UV light. The intensity of the bands was quantified by gel doc 2000 (Bio-Rad). The amount of RT-PCR products were compared to the amount of 18s rRNA, and relative expression ratios were obtained.

5. Mineralization assay

MC3T3-E1 cells were cultured in 12-well multiplates with α-MEM containing 50 ul/ml ascorbic acid, 10 mM β-glycerophosphate (β-GP), and 12PGJ2 or cigitazone for 20 days. The medium was aspirated and the cells were fixed in 10% neutral formalin for 20 min at 4°C, washed with PBS, and stained with 2,5 % silver nitrate for 30 min.

For alizarin Red S staining, washed monolayers were fixed for 30 minutes at room temperature in 10 % buffered formaline, washed 2 times with dH2O, and stained for 10 minutes at room temperature with 2 % Alizarin Red S (Sigma, Aldrich) (pH 4.1-4.3). Monolayers were washed extensively with dH2O, Alizarin Red S and von Kossa staining were visualized using light microscopy.

6. Statistical analysis

All measurements were collected in more than triplicate and expressed as means ± standard deviations. Analysis of differences were performed with one-way ANOVA with Fisher LSD test using SPSS version 11.0 program (SPSS, Chicago, IL). p < 0.05 and p < 0.01 were considered significant.

IV. RESULTS

1. PPARγ mRNA expressed by osteoblastic cells

To investigate the expression of PPARγ in osteoblastic cells, we performed an RC-PCR analysis using specific primers on RNA from Saos-2 cells, PPARγ mRNA was detected as a single band with the predicted size (474 bp) in all 3 groups of cells: control, Δ12PGJ2, and cigitazone treated cells (Figure 1).

2. Effect on the proliferation of Saos-2 cells

Because RT-PCR analysis indicated that the Saos-2
cells have PPAR γ mRNA, we next investigated the biological activity of \(\alpha \text{PGJ}_2 \) and selective PPAR γ agonist, ciglitazone, on the cells. First we studied the effect on the proliferation of the cells. As shown in Table 2, \(\alpha \text{PGJ}_2 \) stimulated the proliferation of Saos-2 cells inversely proportional to concentration in \(10^{-5} - 10^{-8} \) M range. Ciglitazone also stimulated proliferation, but the effect was modest. Both agent indicated inhibitory effect at \(10^{-5} \) M (Figure 2). When \(10^{-8} \) M of \(\alpha \text{PGJ}_2 \) and \(10^{-6} \) M of ciglitazone are compared to control cells, they indicated higher proliferation rate in a time-dependent manner and their

![Figure 1, PPAR γ expression in Saos-2 cell](image)

Table 2, Cell proliferation by MTT assay

<table>
<thead>
<tr>
<th></th>
<th>1 day</th>
<th>2 day</th>
<th>3 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.584 ± 0.039</td>
<td>0.604 ± 0.009</td>
<td>0.743 ± 0.058</td>
</tr>
<tr>
<td>(\alpha \text{PGJ}_2) (M)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10^{-6})</td>
<td>0.582 ± 0.035</td>
<td>0.637 ± 0.085</td>
<td>0.762 ± 0.044</td>
</tr>
<tr>
<td>(10^{-7})</td>
<td>0.604 ± 0.042</td>
<td>0.647 ± 0.035</td>
<td>0.832 ± 0.065</td>
</tr>
<tr>
<td>Ciglitazone (M)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10^{-6})</td>
<td>0.583 ± 0.024</td>
<td>0.598 ± 0.053</td>
<td>0.730 ± 0.047</td>
</tr>
<tr>
<td>(10^{-5})</td>
<td>0.494 ± 0.043</td>
<td>0.374 ± 0.082</td>
<td>0.333 ± 0.036</td>
</tr>
<tr>
<td>(10^{-7})</td>
<td>0.596 ± 0.055</td>
<td>0.595 ± 0.070</td>
<td>0.740 ± 0.034</td>
</tr>
<tr>
<td>(10^{-8})</td>
<td>0.562 ± 0.034</td>
<td>0.615 ± 0.079</td>
<td>0.724 ± 0.027</td>
</tr>
<tr>
<td>(10^{-9})</td>
<td>0.587 ± 0.055</td>
<td>0.634 ± 0.098</td>
<td>0.731 ± 0.061</td>
</tr>
<tr>
<td>(10^{-10})</td>
<td>0.557 ± 0.043</td>
<td>0.655 ± 0.093</td>
<td>0.772 ± 0.067</td>
</tr>
<tr>
<td>(10^{-11})</td>
<td>0.506 ± 0.062</td>
<td>0.628 ± 0.055</td>
<td>0.751 ± 0.061</td>
</tr>
</tbody>
</table>
Figure 2. Effect of the concentration of Δ12PGJ2 and ciglitazone on the proliferation of Saos-2 cells at day 2

Figure 3. Effect of the Δ12PGJ2 and ciglitazone on time-course proliferation

<table>
<thead>
<tr>
<th>Table 3, ALPase activity (nM/μg/30 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
</tr>
<tr>
<td>Δ12PGJ2</td>
</tr>
<tr>
<td>Ciglitazone</td>
</tr>
</tbody>
</table>
effect were observable after 1 day (Figure 3). Here, the effect of cigitazone was more modest than Δ^{12}PGJ$_2$.

3. ALPase activity

The effect on ALPase was investigated at day 2 in 10^5 - 10^9 M concentration range. The stimulation pattern was similar to that of proliferation; Δ^{12}PGJ$_2$ stimulated the ALPase activity of Saos-2 cells mostly at 10^8 M and cigitazone modestly at 10^6 M. (Table 3, Figure 4). So, there seems to be appropriate maximum effective concentration in both agents.

4. Effects of Δ^{12}PGJ$_2$ and cigitazone on the expression of mRNA of osteoblastic differentiation in Saos-2 cells

Based upon the results of MTT assay and ALPase activity test, the appropriate concentrations for Δ^{12}PGJ$_2$ and cigitazone were determined as 10^8 M and 10^6 M for Saos-2 cells, respectively. To investigate the effect on the expression of the differentiation markers of osteoblast, we next performed semi-quantitative RT-PCR using specific primer sets at day 1 and day 7. The relative mRNA levels of COL1 and ALPase in the Δ^{12}PGJ$_2$ treated cells were significantly higher than those in cigitazone treated cells or control cells (Figure 5). The relative mRNA levels of OPN were also higher in Δ^{12}PGJ$_2$ treated cells (Figure 6).

5. Effect on the mineralization of MC3T3-E1 cells

To investigate whether Δ^{12}PGJ$_2$ and cigitazone induced formation of mineralized bone nodules by MC3T3-E1 cells, these cells treated with 10^5 - 10^9 M of Δ^{12}PGJ$_2$ or cigitazone were cultured in the presence of 10 mM β-GP and 50 μg/ml ascorbic acid for 30 days. MC3T3-E1 cells treated with 10^6 M of Δ^{12}PGJ$_2$ and 10^5 M of cigitazone showed marked mineralization whereas untreated control cells showed only slight mineralization.

V. Discussion

Prostaglandins are lipid regulators of a number of
important cellular processes. Much of the prostaglandin literature on bone has focused on major PGs and the role of cell surface receptors in mediating the pleiotropic effects of these compounds. However, given their circulating concentrations, lower molecular weights, and lipophilicity, it seems plausible that a subset of prostaglandins could activate nuclear receptors directly or indirectly after diffusion into target cells.

In this study, we showed that PPARγ is expressed in human osteoblastic cell line, Saos-2 cells at the mRNA levels, Jackson et al, also reported the expression of PPARγ1, α, and δ mRNA in mouse osteoblastic cell line, MC3T3-E158). They showed these PPARs were functional in transfection study using a PPRE-luciferase promoter-reporter construct containing 110 bp of the acyl CoA oxidase promoter, harboring a binding site for PPARs. With this result, we next investigate the effect of 12PGJ2, known as a natural PPARγ ligand, on the proliferation and differentiation of human osteoblastic cell line, Saos-2 cell and compare the result with that of ciglitazone, a synthetic selective PPARγ agonist.

In present investigation, both of 12PGJ2 and
ciglitazone directly stimulated the proliferation of human osteoblastic cells, but their maximum effective concentration was different. While δ^{12}PGJ2 supported the proliferation of Saos-2 cells at low concentration, ciglitazone at relatively high concentration. And both of agents inhibited the proliferation of this osteoblastic cell line at 10^{-5} M. These findings also showed with mouse osteoblastic cell line, MG3T3-E1 in our laboratory (data not shown). Consistant of this, Jackson et al, reported inhibitory effect of ciglitazone at 10^{-5} M concentration to mouse osteoblastic cell line50. Yu et al, also reported in their experiment with series of eicosanoids, that 10^{-4} M of PGD2 caused death of the human osteosarcoma line, U2OS cells transfected with PPARγ fusion protein51. Considering the fact that eicosanoids generally circulate at low levels (less than 1 nM) in the plasma, concentration below those at which they are normally able to elicit responses51 and 10^{-5} M is non-physiologic, excessive concentration, it is thought that the cytotoxicity at this high concentration doesn't have significant meaning.

In this study, we have demonstrated that 10^{-8} M of
Δ^{12}PGJ$_2$ and 10^{-6}M of cigitazone stimulated human osteoblastic differentiation using semi-quantitative RT PCR analysis. And we also showed that 10^{-6}M of Δ^{12}PGJ$_2$ and 10^{-5}M of cigitazone markedly increased formation of mineralized bone nodules by MC3T3-E1 cells. PPARγ was originally known as a key player of adipocyte differentiation and Czemik et al. reported that PPARγ ligand, 15-d PGJ$_2$ and rosiglitazone, stimulates adipogenesis and inhibits osteoblastogenesis in U-33/γ2 cells, mesenchymal progenitor of adipocytes and osteoblasts57. But, in their study, inhibition of osteoblastic differentiation required the induced expression of endogenous PPARγ2, which was not detected in MC3T3-E1 cells. So, it is thought that PPARγ ligands act differently to cells in different levels of mesenchymal lineage commitment. Our data are in agree with Koshihara et al, who reported in their human femur
explant cultural study, that PGD₂ stimulates ALPase activity and calcification unexpectedly, with potencies nearly equal to 1,25(OH)₂D₃ at 10⁻⁸ M⁽³¹⁾. They suggested that active metabolite is δ¹²PGJ₂, because PGD₂ is easily metabolite by plasma albumin to give δ¹²PGJ₂ and PGD₂ added to a culture medium containing 10 % fetal bovine serum and incubated at 37 °C for 2 days is converted 100 % into δ¹²PGJ₂. Tasaki et al. also reported that 10⁻⁵ M of δ¹²PGJ₂ stimulate collagen synthesis by human osteoblasts from femur explant, though they didn't know the mechanism of action⁽²²⁾. In our investigation, maximum effective concentration of δ¹²PGJ₂ on Saos-2 cell line was 10⁻⁸ M, lower than previous studies, indicating that this cell line is more sensitive to this bone inducing prostanoïd.

Ciglitazone belongs to the thiazolidinedione (TZD) class of insulin-sensitizing drugs, and is clinically used as an oral antidiabetic agent for NIDDM patients. These drugs were originally developed without any knowledge of their molecular targets, but later known to act as direct agonists for PPARγ and TNF-α leptin, lipoprotein lipase, aP2 (fatty-acid binding protein) and GLUT4 are suggested as potential target genes for PPARγ relevant for the antidiabetic action of the TZD⁽⁵⁰⁾. It is well known that periodontal tissue destruction is one of the serious complications of DM⁽²⁰⁾. So, it is likely that favorable periodontal state of controlled diabetic patients is due partly to direct action of TZD on osteoblastic cells if pharmacological does of this drug is sufficient to stimulate PPARγ at these sites. This assumption awaits further research.

The underlying molecular mechanisms by which PPARγ affects proliferation and differentiation of osteoblastic cells are not fully understood. A putative PPAR binding site was identified in the promoter of the osteopontin gene⁽⁵¹⁾ and PPAR induces expression of the glucose transporter, GLUT4 during adipocytic differentiation which was recently shown to be required for bone growth, perhaps related to increased energy requirements during matrix synthesis⁽⁶⁰⁾. It is possible that the PPAR-independent pathway also exists because high affinity ligand, ciglitazone showed more modest effect than δ¹²PGJ₂ in our investigation.

Many independent series of studies on δ¹²PGJ₂ metabolites indicate that this agents mitigate the inflammatory process by inhibiting pro-inflammatory cytokines at the transcriptional level⁽³²⁻⁴⁰⁾, and several observations suggests that 15dPGJ₂ functions as a physiological negative feedback regulator of prostaglandin synthesis by repressing the COX-2 expression⁽⁶⁵⁻⁶⁶⁾. In view of the fact that proinflammatory cytokines play crucial roles in the connective tissue destruction seen in periodontitis⁽⁶⁷⁾, it would be beneficial to apply this agent for resolution of chronic inflammation of the periodontal tissue.

It is hasty to consider the clinical application of this bone inducing prostanoïd in periodontal field, because the majority of studies are limited to in vitro study, and the physiological role of these compound in vivo needs further research. Nevertheless, it will be promising field of research considering the favorable biologic effect on osteoblastic cells and anti-inflammatory function of these compound.

VI. Conclusion

In this study, the expression of PPARγ was examined by RT-PCR analysis using specific primers on RNA. PPARγ mRNA was detected as a single band with the predicted size (474 bp) in human osteoblastic Saos-2 cell line. Next, the effects of δ¹²PGJ₂ and ciglitazone on proliferation and differentiation of human and mouse osteoblastic cell line were examined. In MTT assay, both agents stimulated the proliferation of Saos-2 cells, When 10⁻⁸ M of
\(\text{d}^{12}\text{PGJ}_2 \) and \(10^{-6} \text{ M} \) of cigitazone are compared to control cells, they indicated higher proliferation rate in a time-dependent manner and their effect were observable after 1 day. When the effect on ALPase activity was investigated at day 2 in \(10^{-5} - 10^{-9} \text{ M} \) concentration range, the stimulation pattern was similar to that to proliferation, \(\text{d}^{12}\text{PGJ}_2 \) stimulated the ALPase activity of Saos-2 cells significantly at \(10^{-8} \text{ M} \) and cigitazone modestly at \(10^{-6} \text{ M} \). To investigate the effect on the expression of the differentiation markers of osteoblast, we next performed semi-quantitative RT-PCR using specific primer sets. The relative mRNA levels of type I collagen and ALPase in the \(\text{d}^{12}\text{PGJ}_2 \) treated cells were significantly higher that those in cigitazone treated cells or control cells. The relative mRNA levels of osteopontin were also higher in \(\text{d}^{12}\text{PGJ}_2 \) treated cells, MC3T3-E1 treated with \(10^{-6} \text{ M} \) of \(\text{d}^{12}\text{PGJ}_2 \) and \(10^{-5} \text{ M} \) of cigitazone showed marked mineralization whereas untreated cells showed only slight mineralization. These findings show favorable biologic effect of \(\text{d}^{12}\text{PGJ}_2 \) on osteoblastic cells and its mechanism of action may involved PPAR \(\gamma \) dependent pathway,

VII. REFERENCES

11. Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM, A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor \(\gamma \) and promotes adipocyte differenti-
ation Cell 1995;83:813-819.
29. Fitzpatrick FA, Wynka MA, Albumin-catalyzed metabolism of prostaglandin D2, Identification
30. Kikawa Y, Narumiya S, Fukushima M, Wakatsuka H, Hayashi O, 9-Deoxy-Δ9, Δ12-
13,14-dihydroprostaglandin D2, a metabolite of prostaglandin D2 formed in human plasma,
Willson TM, Lenhard JM, Lehmann JM, Fatty acids and eicosanoids regulate gene expression
through direct interactions with peroxisome proliferator-activated receptors α and γ Proc Natl
Acad Sci USA 1999;94:4318-4323.
32. Jiang C, Ting AT, Seed B, PPAR γ agonists inhibit production of monocyte inflammatory
33. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK,
The peroxisome proliferator-activated receptor γ is a negative regulator of macrophage activation,
34. Azuma Y, Shinohara M, Wang PL, Ohura K, 15-
Deoxy-Δ12,14-prostaglandin J2 inhibits IL-10 and IL-12 production by macrophages,
Biochemical and Biophysical Research Communications 2001;283:344-346.
35. Petrova TV, Akama KT, Eldik Lj,
Cyclopentenone prostaglandins suppress activation of microglia : down-regulation of inducible nitric-oxide synthase by 15-deoxy-Δ12,14-
represses NO, TNF-α and IL-12 production by micorglial cells, J Neuroimmunol 2001;115:28-
35.
37. Guyton K, Bond R, Reilly C, Gilkeson G,
Halushka P, Cook J, Differential effects of 15-
deoxy-Δ12,14-prostaglandin J2 and a peroxi-
some proliferator-activated receptor γ agonist on
38. Boyault S, Simonin MA, Bianchi A, Compe E,
Liagre B, Mainard D, Becuwe P, Dauca M, Netter P, Terlain B, Borkji K, 15-deoxy-
Δ12,14-
prostaglandin J2 but not troglitazone, modulates IL-1β effects in human chondrocytes by inhibiting
39. Yuchang F, Nanlan HK, Maria F, Lopes V,
Upregulation of interleukin-8 expression by
40. Thieringer R, Melody JF, Grand GB, Shelton BA,
Detmers PA, Somers EP, Carbin L, Moller DE,
Wright SD, Berger J, Activation of peroxisome proliferator-activated receptor γ does not inhibit
IL-6 of TNF-α responses of macrophages to lipopolysaccharide in vitro or in vivo, J
Immunology 2000;164:1046-1054.
41. Jozkowicz A, Dulak J, Prager M, Nanobashvili J,
Nigish A, Winter B, Weigel G, Huk I,
Prostaglandin-J2 induces synthesis of interleukin-
8 by endothelial cells in a PPAR γ-independent
manner, Prostaglandins & other Lipid Mediators
42. Hughes-Fullford M, Fukushima M, Control of cell
cycle by metabolites of prostaglandin D2
through a non-cAMP mediated mechanism, Life
43. Li L, Tao J, Davaille J, Fdral C, Mallat A, Rieusset
J, Vidal H, Lotersztajn S, 15-deoxy-Δ12,14-
44. Kondo M, Oya-Ito T, Kumagai T, Osawa T,

60. Qu Q, Perällä-Hepeape M, Kapanen A, Dahlund

64. Maor G and Karnieli E, The insulin-sensitive glucose transporter (GLUT4) is involved in early bone growth in control and diabetic mice, but is regulated through the insulin-like growth factor I receptor, Endocrinology 1999;140:1841-1851.

\(\Delta^{12} \text{PGJ}_2 \) 및 PPAR 감마 길항체가 조골세포의 증식 및 분화에 미치는 효과

허정미\(^1\), 김경화\(^1\), 정경욱\(^1\), 이해준\(^1\), 류인철\(^1\), 구 영\(^2,3\), 정중평\(^2,3\)

\(^1\)서울대학교 치과대학 치주과학교실
\(^2\)지능형생체계면공학연구센터, 과학재단

1. 목적
Prostaglandin은 치주질환과 관련된 국소적 골 대사에 중요한 역할을 한다. \(\Delta^{12} \text{PGJ}_2 \)는 생체 내에서 혈장의 존재 하에 형성되는 천연 PGJ2 대사산물이며 peroxisome proliferator에 의해 활성화되는 감마 수용체 (PPAR \(\gamma \))에 대해 높은 친화성을 갖는 리간드로서 혈 수용체군에 속하는 전사조절인자이다. 이 연구의 목적은 폐화 과정에서 \(\Delta^{12} \text{PGJ}_2 \)의 역할을 규명하기 위해, 조골세포주의 증식과 분화에 미치는 영향과 그에 관련된 세포기전을 조사하는 데에 있다.

2. 방법
인간 골유주세포주인 Saos-2 (ATCC, HTB 85)와 쥐의 조골세포주 (MC3T3-E1)를 배양한 후 실험군에 농도가 각각 10^(-6), 10^(-5), 10^(-4), 10^(-3) 품인 \(\Delta^{12} \text{PGJ}_2 \)와 ciglitazone (합성 PPAR 감마 길항체)를 병용하였다. 조골세포에서 PPAR 감마의 발현을 관찰하기 위해 역전사효소-종합효소연쇄반응 (RT-PCR)을 특성화한 primer을 이용하여 시행하였다. 세포 증식은 1 일, 2 일, 3 일째에 MTT 분석법으로 측정하였고, 2 일째에 알칼리성 인산효소 (ALPase) 생산을 측정하였다. 웨의 결과에서 얻은 적정한 농도에서 다양한 조골세포 분화의 표지자들의 1형 교근절, 알칼리성 인산효소, osteopontin 및 bone sialoprotein에 대한 간이 정량적 역전사효소-종합효소연쇄반응 (semi-quantitative RT-PCR)을 실시하였으며 괄호결 형성에 대한 효과를 알아보고자 석화화 분석도 시행하였다.

3. 결과
\(\Delta^{12} \text{PGJ}_2 \)와 ciglitazone 모두 Saos-2 세포주의 증식을 촉진시켰다. 10^(-6) 품의 \(\Delta^{12} \text{PGJ}_2 \)와 10^(-6) 품의 ciglitazone을 병용한 실험군을 대조군과 비교했을 때, 시간에 비례하여 세포 증식률이 증가되었다. 알칼리성 인산효소의 활성화 검사에서도 증식률에서 유사한 결과를 보여주었다. 간이 정량적 RT-PCR에서는 \(\Delta^{12} \text{PGJ}_2 \)로 처리한 군의 경우 제 1형 교근절, 알칼리성 인산효소, osteopontin, 그리고 bone sialoprotein의 상대적 mRNA 수준이 유의하게 높았다. 석화화 분석에서는 MC3T3-E1 세포를 10^(-6) 품의 \(\Delta^{12} \text{PGJ}_2 \)로 처리한 군과 10^(-5) 품의 ciglitazone으로 처리한 군에서 현저한 골결절 형성을 보였다. 이러한 결과들은 \(\Delta^{12} \text{PGJ}_2 \)가 유용한 골 유도물질이 될 수 있으며 또한 그 작용기가 PPAR 감마-의존형 경로와 연관되어 있음을 보여준다.

주요어: \(\Delta^{12} \text{PGJ}_2 \), PPAR \(\gamma \), ciglitazone, 조골세포, 역전사효소-종합효소연쇄반응