Antiinflammatory Effects of Tetracycline-loaded Biodegradable Membranes in Experimental Periodontitis of Beagle Dogs

Hyung-Sik Jun¹ · Yang-Jo Seol¹ · Yoon-Jeong Park² · Yong-Moo Lee¹ · Young Ku¹
In-Cheul Rhyu¹ · Seung-Jin Lee² · Soo-Boo Han¹ · Sang-Mook Choi¹
Soo-Kyoung Kwon³ and Chong-Pyoung Chung¹

¹Dept. of Periodontology, College of Dentistry, Seoul National University,
²College of Pharmacy, Ewha Womans University, ³Dept. of Dentistry Eulji Medical School

I. Introduction

The ultimate objective of periodontal therapy is the regeneration of the periodontium destroyed by inflammatory periodontal disease. This means the formation of new connective tissue attachment with connective tissue fibers inserting into diseased root surface with formation of new cementum and bone regeneration. Guided tissue regeneration(GTR) provides environment for regeneration of cementum, periodontal ligament, and bone by placing a barrier membrane between the gingiva and the diseased root surface¹-³. The purpose of the barrier membrane is not only to prevent proliferation of gingival epithelium and connective tissue into the denongingival wound space, but also to divert mechanical stress from the coagulum-tooth interface, and thus allow undisturbed organization of the blood clot and promote early attachment of connective tissue elements to the root surface⁴.

Post-operative contamination of the membrane or infection of the surgical site is a problem often encountered⁵ using barrier membrane for GTR therapy. This is especially true when the membrane is exposed⁶. Clinically, many techniques have been tried to prevent the exposure of the membrane. But the exposure of the membrane due to the morphology of the tooth itself⁷, incomplete coverage of the membrane by the gingival flap⁸, dehiscence of the gingival flap⁹, or gingival recession¹⁰ is a common complication resulting from guided tissue regeneration therapy. This increases incidence of infection of the newly formed tissue beneath the exposed membrane when it is exposed¹¹. Microorganisms can adhere to and colonize exposed membranes leading to the development of a nidus of infection, Microbial adherence has been associated with infection and subsequent rejection of many biomaterials¹². Increased bacterial contamination of the site where a membrane was used could be seen². Some have reported that e-PTFE membranes show higher incidence of bacterial infection⁴,¹³-¹⁵. Infections of the membranes affect clinical outcomes. Many studies have shown that contamination of the membranes and the degree of infection are related to decreased clinical attachment gain¹⁰,¹⁶-¹⁸. It has been reported that clinical healing response is related to whether the membrane is infected or not¹⁹. This

* This study was supported by the Korea Science & Engineering foundation(Grant no, 97-0403-0701-3).
explains the importance of infection control as a part of regenerative attempt.9,10

In many researches, systemic antibiotics has been administrated to prevent post-operative infection after guided tissue regeneration therapy.11-20 Tetracycline is effective on a wide range of periodontal pathogens,21-25 and inhibits connective tissue destruction by inhibiting neutrophil collagenases.26 Due to these effects, tetracycline has been used systematically or locally for treatment of periodontal diseases.27-30 Tetracycline binds to the root surface and is slowly released from the root surface.31 Reattachment or regeneration of the periodontal tissues may also be enhanced by promotion of fibroblast attachment, conditioning of root surfaces, and inhibition of collagenase activity.32-34 Also tetracycline can increase attachment,35 inhibit bone resorption in vitro,36,37 and increase collagen formation of osteoblasts.38 Pretreatment of dentin with tetracycline increased migration of periodontal ligament cells. Also fibronectin adhered better to the root surface when the root was treated with tetracycline.39

In this study, membrane was formed by polyglycolic acid mesh coated on 10% tetracycline(TC) containing polylactic acid. The purpose of this study is to evaluate antiinflammatory and antimicrobial effects of Tc-loaded biodegradable membrane in experimentally induced periodontitis in beagle dogs and to investigate release characteristics of the Tc-loaded membrane.

II. Materials and Methods

1. Formation of the Tetracycline-loaded Membrane

The membrane used in this experiment was formed as below.40 PGA meshes were knitted with a tube knitter(Koike Ltd., Nara, Japan) with PGA(polyglycolic acid, viscosity 18,000 poise, Samyang Co., Seoul, Korea). Initial strength of the mesh was 5.2g/d. The mesh was spread out, fixed and covered with polylactic acid(MW 300,000, Purac Biochem BV, Gorinchem, Holland). This was dried for 24 hours at room temperature and the was evaporated. This was vacuum dried for 24 hours and the remaining solvent was removed. To produce a membrane containing tetracycline, first, polylactic acid was dissolved in methylene chloride and ethylacetate was added, Tetracycline(Sigma Chemical Co., St Louis, MO, USA) was mixed with dissolved polylactic acid at 10% weight ratio, PLA solutions were cast on PGA meshes by using a doctoring blade and solvents were evaporated in air for 24 hours and further dried under vacuum for 24 hours to remove residual solvents, Membranes used in the experiment was sterilized with EO gas one day before the experiment.

2. Experimental Animals

Healthy beagle dogs weighing approximately 15 Kg were used regardless of sex. Of the six, five beagle dogs were used to evaluate the efficacy of the membrane containing tetracycline on guided tissue regeneration. Three dogs were assigned to the test group which was implanted with tetracycline-loaded membrane(Group I). Two dogs were assigned to the membrane without tetracycline (Group II) and no membrane used(Group III) contralaterally. To prevent the influence of tetracycline, tetracycline-loaded membranes were used in the test group only. One remaining dog was used to evaluate the concentration of tetracycline released into the gingival sulcus.

3. Defect Formation
Bony defects were formed 2-3 months before membrane placement. General anesthesia was induced in experimental animals by infiltration of equal parts of 2% Xylazine hydrochloride (Rumpun, Bayer Korea, Korea) and ketamine hydrochloride (Ketalar, Yuhan, Korea). Local anesthesia was obtained by infiltration of 2% lidocaine containing 1:100,000 epinephrine for bleeding control. Upper canine and 2nd premolar, or lower 3rd and 4th premolars were used in the experiment. Full thickness flap was raised after sulcular incision was extended one tooth mesial and distal to the test tooth. Vertical incision was added when necessary. Alveolar bone defects were formed with low speed carbide round bur and chisel after removal of all granulation tissues and calculus. Class II furcation defects were formed in premolars according to following dimensions; 5mm vertically from CEJ, mesiodistally to the line angle, buccolingually 2-3mm deep. In canines, dehiscence defect measuring 4mm wide and 5mm deep from neighboring alveolar crest was formed. To prevent natural healing and to induce chronic inflammation, alveolar bone defect was filled with silicone rubber impression material (EXAMIXTM, GC America Inc., Japan) and sutured with black silk. Penicillin G procaine (Pfizer Co., New York, U, S, A.) was injected for 5 days intramuscularly and soft fluid diet was given for 2 weeks. Stitch out was done 2 weeks after operation.

4. Surgical Procedure

2-3 months after defect formation, general anesthesia was induced according to the same procedure as described previously. Full thickness flap was raised including one tooth mesial and distal to the test area with sulcular incision. Scaling and root planing was done after removal of rubber impression materials. To prevent cross-over effect, only tetracycline-loaded membranes were used in the test group. The membrane was trimmed to cover the defect 2-3mm over the bone. The membrane was sling sutured on the tooth and flap was repositioned. Complete coverage of the membrane was attempted. Penicillin G procaine (Pfizer Co., New York, USA) was injected intramuscularly for 7 days and soft fluid diet was given for 2 weeks. Oral hygiene was maintained with 0.1% chlorhexidine three times a week from post-op 2 weeks. Stitch out was done post-op 2 weeks.

In two weeks postsurgery, the dogs were sacrificed, Maxilla and mandibles were block-resected and fixed in 10% formalin for histologic preparation and analysis. Undecalcified specimens were prepared according to Donath and Breuner’s method.

5. Measurements of Clinical Parameters and Microbiological Assay

Following clinical parameters were measured directly before surgery, and 1, 2, 4 weeks post-operatively, GI (Gingival Index, Loe & Silness 1963)\(^4\), PI (Plaque Index, Silness & Loe 1964)\(^5\) of the test site were measured. Periopaper strip (Proflow Inc., NY, USA) was inserted in the gingival sulcus for 30 seconds to sample gingival crevicular fluid and GCF was measured with Periotron 8000 (Proflow Inc., NY, USA).

Microbiological assay was done after measurement of clinical parameters. To sample subgingival plaque three paper points (DiaDent Group International, Chongju, Korea) were inserted in the pocket for 30 seconds and these were placed in Moller’s VMGA III and immediately moved to the anaerobic chamber (Forma, OH, USA), and mixed with a vortex mixer (Vortex mixer) for 30 seconds. Serial dilution of the VMGA III solution containing bacteria was done to 1/10, 1/100, 1/10000 of the
original solution, 100μl of this solution was spreaded on selective agar plates. Aerobic bacteria was plated on 5% sheep blood agar plate and cultured in a 10% CO² chamber at 37 °C (Vision, Korea), and anaerobic bacteria was plated on Tryptic soy agar plate containing 5% sheep blood, vitamin K, and hemin and cultured in an anaerobic chamber containing H₂, 10% CO₂, 80% N₂ at 37°C. After 7 days, the total number of CFU of aerobic bacteria and anaerobic bacteria was calculated.

6. Bioassay of Released Tetracycline

Tetracycline-loaded membranes were placed on left and right upper canines and 2nd premolars, and on lower 2nd and 3rd premolars according to the above procedure. Method of Bennet et al. was modified to investigate the concentration of tetracycline in the tissues. At post-operatively 1, 3, 5, 7, 14 days, Periopaper strip® (Proflow Inc., NY, USA) was placed between the gingiva and the membrane for 30 seconds to detect tetracycline in tissue fluid. These periopapers were placed on a B, cereus cultured nutrient agar plate and cultured for 36-48 hours at 37°C. After culture, inhibitory zones were measured with a caliper placed perpendicular to the periopaper and measured to the nearest mm. Standard curve was calculated by serial dilution of tetracycline. The concentrations of the tetracycline released in the gingival sulcus were measured indirectly with standard curve.

7. Statistical Analysis

Sample size was calculated on a tooth basis, Homogenicy test of standard deviation was done on each group at each period to assess whether application of parametric analysis is appropriate. Repeated measures ANOVA method was used to analyze the effect of treatment, and to compare the interactions of treatment method and time. For posthoc multivariate comparison, Dunnett test was done, 0.05 was taken for α error, SPSS software version 7.0 (SPSS Inc., Chicago, IL, USA) was used for statistical analysis.

III. Results

1. Baseline examinations

Difference in dependent variables (GI, PI, GCF, total colony forming units of anaerobic bacteria, total colony forming units of aerobic bacteria) were not statistically significant at baseline among groups.

2. Clinical measurements

GI in the membrane group (Group I, II) showed a slight tendency to increase at 1 week after surgery. In the Group I, this decreased significantly 2 weeks after surgery (p<0.05) and this was maintained till the 4th week. GI of the Tc-unloaded group (Group II) or of the control group (Group III) was slightly higher than that of the Group I throughout the study. But no statistical difference was seen between the groups (Table 1, Figure 1). Plaque index of the Group I and Group III decreased with time. But in the Tc-unloaded membrane group, plaque index increased, In Group I, the PI scores at 4th week was significantly less than that at the baseline (p<0.05), in Group II, this was higher at 1st week and maintained at this level at 2, 4 weeks but these scores were slightly higher than that of the Group I or than that of the Group III, In Group III, PI at 1st week did not differ from the baseline but showed a tendency to be decrease at 2 and 4 weeks(Table 2, Figure 2). The volume of gingival crevicular fluid measured with Periotron® was simi-
Table 1. Comparison of GI of the three groups (mean ± SE)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>1 week</th>
<th>2 weeks</th>
<th>4 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>1.58±0.15</td>
<td>1.83±0.13</td>
<td>1.08±0.19*</td>
<td>1.17±0.21*</td>
</tr>
<tr>
<td>Group II</td>
<td>1.25±0.25</td>
<td>1.75±0.48</td>
<td>1.50±0.50</td>
<td>1.50±0.25</td>
</tr>
<tr>
<td>Group III</td>
<td>1.75±0.48</td>
<td>1.50±0.29</td>
<td>1.75±0.25</td>
<td>1.50±0.25</td>
</tr>
</tbody>
</table>

* : The mean difference is significant at the 0.05 level from baseline.

Group I : tetracycline-loaded membrane group
Group II : tetracycline-unloaded membrane group
Group III : without membrane group

Figure 1. Comparison of GI of the three groups. GI of the Group I at post-op 2 and 4 weeks showed significant decrease from baseline. GI of the Group II and the Group III showed slight increase or no increase.

Table 2. Comparison of PI of the three groups(mean ± SE)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>1 week</th>
<th>2 weeks</th>
<th>4 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>2.00±0.15</td>
<td>1.58±0.13*</td>
<td>1.50±0.19*</td>
<td>1.42±0.21*</td>
</tr>
<tr>
<td>Group II</td>
<td>1.50±0.50</td>
<td>2.00±0.00</td>
<td>1.75±0.48</td>
<td>1.75±0.48</td>
</tr>
<tr>
<td>Group III</td>
<td>2.00±0.41</td>
<td>2.00±0.00</td>
<td>1.50±0.29*</td>
<td>1.25±0.25*</td>
</tr>
</tbody>
</table>

* : The mean difference is significant at the 0.05 level from baseline.

In all the groups, the volume measured at the first week was higher than that of the baseline but this decreased and at the 4th week, the measured volume was similar to that of the baseline(Table 3, Figure 3).

3. Microbiological Assay

Total anaerobic and aerobic colony forming units of each group is shown in tables 4, 5 and figures 4, 5. CFUs of anaerobic and aerobic bacteria were expressed as log10 of the value,

(1) Anaerobic Bacteria

In the Group I, post-operative number of total
Figure 2. Comparison of PI of the three groups. Plaque index of the Group I and the Group III decreased. In the Group II, Plaque index increased.

Table 3. Comparison of GCF volume of the three groups (mean ± SE)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>1 week</th>
<th>2 weeks</th>
<th>4 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>80.83±6.60</td>
<td>104.88±5.85</td>
<td>93.42±7.05</td>
<td>86.25±7.30</td>
</tr>
<tr>
<td>Group II</td>
<td>74.00±14.39</td>
<td>99.50±25.47</td>
<td>82.25±5.81</td>
<td>76.00±8.42</td>
</tr>
<tr>
<td>Group III</td>
<td>73.25±26.16</td>
<td>119.25±15.43</td>
<td>80.50±27.73</td>
<td>67.00±12.25</td>
</tr>
</tbody>
</table>

Figure 3. Comparison of GCF volume of the three groups. Post-op 1 week values in all three groups are significantly increased from baseline. Thereafter GCF volumes decreased with time to a level similar to baseline measurements at week 4.

colony forming units was decreased at 1 week and rebounded at 2, 4 weeks slightly. In the group II and III, CFU were slowly decreased throughout the study (Table 4, Figure 4). In the view of time point, there was significant differences group I and group II, III at 1 week. Also, there were significant differ-
Table 4. Total CFU of anaerobic bacteria (mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>1 week</th>
<th>2 weeks</th>
<th>4 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>6.31±0.21</td>
<td>4.44±0.24*</td>
<td>5.41±0.27*</td>
<td>5.31±0.38*</td>
</tr>
<tr>
<td>Group II</td>
<td>6.29±0.23</td>
<td>6.21±0.38</td>
<td>6.04±0.43</td>
<td>5.80±0.44*</td>
</tr>
<tr>
<td>Group III</td>
<td>6.30±0.31</td>
<td>5.52±0.45</td>
<td>5.32±0.37*</td>
<td>5.02±0.44*</td>
</tr>
</tbody>
</table>

CFU of anaerobic bacteria was expressed as log10 of the value.
* : The mean difference was significant at the 0.001 level from baseline.
*: The mean difference was significant at the 0.001 level between Group I and group II, III.
*: The mean difference was significant at the 0.001 level between Group I, III and group II.

Figure 4. Total CFU of anaerobic bacteria, CFU of bacteria was expressed as log10 of the value. Total CFU of the Group I was less than that of the Group II throughout the study period.

Table 5. Total CFU of aerobic bacteria (mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>1 week</th>
<th>2 weeks</th>
<th>4 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>5.31±0.27</td>
<td>4.41±0.20*</td>
<td>5.20±0.31</td>
<td>5.26±0.37</td>
</tr>
<tr>
<td>Group II</td>
<td>5.37±0.16</td>
<td>5.31±0.21</td>
<td>5.40±0.19</td>
<td>5.32±0.26</td>
</tr>
<tr>
<td>Group III</td>
<td>5.39±0.25</td>
<td>5.35±0.22</td>
<td>5.25±0.24</td>
<td>5.43±0.31</td>
</tr>
</tbody>
</table>

CFU of aerobic bacteria was expressed as log10 of the value.
: The mean difference was significant at the 0.001 level from baseline.
*: The mean difference was significant at the 0.001 level between Group I and group II, III.

ences between group II and group I, III at 2, 4 weeks (p<0.001).

(2) Aerobic Bacteria

In the group I, as the pattern of cfu of anaerobic bacteria post-operative number of total colony forming units was decreased at 1 week but rebounded nearly baseline level at 2, 4 weeks. In the group II and III, CFU were slowly decreased throughout the study(Table 5, Figure 5). In the view of time point, there was significant differences group I and group II, III at 1 week. But, there were no significant differ-
Figure 5. Total CFU of aerobic bacteria, CFU of bacteria was expressed as log10 of the value.

Table 6. Tetracycline release kinetics

<table>
<thead>
<tr>
<th>days</th>
<th>1 day</th>
<th>3 days</th>
<th>5 days</th>
<th>7 days</th>
<th>14 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>concentration (ug/ml)</td>
<td>52.50 ± 14.40</td>
<td>35.00 ± 13.42</td>
<td>30.83 ± 14.63</td>
<td>29.17 ± 13.20</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6. Tetracycline release kinetics. At day 1 Tc was released at 52.50 ± 14.40 ug/ml. Tc was steadily released at day 3, 5, 7 at 35.00 ± 13.42, 30.83 ± 14.63, 29.17 ± 13.20 ug/ml each. On the 14th day, no Tc was detected.

ences among any groups at 2, 4 weeks.

4. Tetracycline Release Kinetics

To test the release kinetics of loaded tetracycline from the membrane, the diameter of the inhibition zone formed in the nutrient agar plate was measured and the concentrations of released tetracycline were calculated from the standard curve prepared, This was measured at a total of 6 sites and the aver-
age concentration was calculated. On the first day, the measured concentration was 52.50±14.40 μg/ml which is quite high and on the 3rd, 5th and the 7th day, this was released consistently at 35.00±13.42 μg/ml, 30.83±14.63 μg/ml, 29.17±13.57 μg/ml each (Table 6, Figure 6). But on the 14th day, Tc was not detected.

IV. Discussion

This study was done to evaluate whether Tc-loaded membranes can inhibit contamination and bacterial colonization of the membrane, and infection of the surgical site in initial healing period. Tetracycline, a wide-spectrum antibiotic was loaded in a biodegradable membrane and the following was investigated 1) Whether Tc-loaded membrane could decrease clinical signs of inflammation and the number of bacteria found in a experimental periodontitis site in a beagle dog 2) the release kinetics of Tetracycline.

Membranes used in this study were not seen to be cytotoxic in a previous study using the polymer used in this membrane\(^\text{39}\). This membrane started to be degraded 4-6 weeks after placement in the subgingival tissue of rat without any adverse tissue reaction\(^\text{50}\).

The decrease in clinical gingival inflammation and plaque accumulation in the Tc-loaded membrane group was greater than that of the Tc-unloaded membrane group, but this difference was not statistically significant. In the Tc-loaded membrane group, GI and PI tended to be decreased from post-op week 1 to week 4. But, GCF volume measured by Periotron\(^\text{R}\) increased at 1 week after surgery in all three groups and decreased to same level as baseline and was similar between all three groups throughout the test period. The total colony forming units(CFU) of anaerobic bacteria in the Tc-loaded membrane group was less than that of the Tc-unloaded membrane group at all time points, Though rebounded at 2week, the cfus of both anaerobe and aerobe of Tc-loaded membrane group were significantly decreased at 1week compared to not only baseline but also the other groups. This antibacterial effect may be helpful initial healing of the tissue regenerative process.

In this study, the concentrations of tetracycline released from the membrane was indirectly measured by sampling Tc released in the gingival sulcus with periopapers\(^\text{47-49}\). The level of Tc released from the membrane was the highest at day 1 at 52.50±14.40 μg/ml, and on day 3, 5, 7, was steadily released at the concentrations of 35.00±13.42 μg/ml, 30.83±14.63 μg/ml, 29.17±13.57 μg/ml. But, Tc was not observed at day 14, Kim et al51 have reported in an in vivo study that Tc was released from a 10% Tc-loaded membrane at the concentration of 52μg/ml at day 1 and was steadily released thereafter for 4 weeks. But in that study, the release kinetics of the Tc was seen by removal of Tc at various time points after placement of the membrane in the subcutaneous tissue in the rat, Markman et al tested a cellulose membrane containing Tc to investigate its release kinetics but this experiment was also under closed conditions. In that experiment, slow release of Tc was seen at concentration of 218μg/ml at day 1 and this release was continued till day 12 at 20,8μg/ml\(^\text{52}\). In this experiment, Tc-loaded membrane was placed in periodontitis-alveolar bone defect and gingivitis-induced site in beagle dog, and released Tc in the sulcus was measured. Most microorganisms found in the gingival sulcus were susceptible to 8μg/ml of Tc\(^\text{57}\). Though Tc was not detected in the sulcus at day 14, it was slowly released to the sulcus at levels above MIC till day 7.

Relatively many GTR barriers are exposed to the oral environment, Some studies have reported that
in 70% of GTR cases, membranes were exposed and bacteria found on the surface of the exposed membranes\(^{10,19}\). Infection of the surgical site and the membrane can occur between the gingival flap and the tooth surface. Also when the membrane is exposed, bacterial infection of the membrane is enhanced and as the apical migration of the epithelium occurs, a pocket-like structure is formed external to the membrane. Bacterial colonies have been observed with light microscopes on both the external and the internal surface of the membrane\(^{4}\). Mombelli et al has reported that putative periodontal pathogens were cultured from retrieved GTR barriers. Gram-negative, anaerobic rods made up 31% of the total organisms from all samples\(^{58}\). It is not clear to what extent bacterial colonization of GTR materials compromise success of therapy, but it can be safely assumed that microbial colonization causes complications. Some have reported that attachment of bacteria on the removed barrier membranes are related to limited clinical attachment gain\(^{10,16,54,55}\).

Systemic antibiotics have been used after GTR therapy to decrease the incidence of infection of the surgical site or membrane. Demolon et al reported that when microbiological assay with DNA probes were done on bacteria sampled with paper points, total number of bacteria increased when time passed regardless of use of post-operative systemic antibiotics\(^{21}\). It was concluded that when a membrane is placed, the number of bacteria is increased as time passes whether systemic antibiotics are used or not\(^{21,50}\). Local application of chlorhexidine is necessary to inhibit infection of the membrane or surgical site, but this is limited to post-operative 1st week when it is difficult for the patient to maintain oral hygiene. In this study, almost no oral hygiene measures were performed for 2 weeks after surgery. After this period, limited oral hygiene measures were taken 2-3 times a week with chlorhexidine, This differs from usual human studies. When membranes are placed in human subjects, postoperative chlorhexidine gargling is prescribed and professional oral prophylaxis is done to inhibit contamination of the membrane or infection of the surgical site. As mentioned previously, the results of this study show that though Tc-loaded membrane is more effective than Tc-non-loaded membrane, as membranes tend to be infected by bacteria, the number of colony forming units found in the Tc-loaded membrane group, was greater than that found in the control group. Meticulous plaque control during surgery and post-operatively or the use of wide-spectrum antibiotics cannot completely inhibit bacterial contamination of the membrane or infection of the surgical site, Aseptic technique is necessary to offer better conditions for regenerative therapy. Local application of antibiotics directly on the membrane may be more effective\(^{57}\).

In this study, to prevent crossover effect of Tc, split mouth design was not used. Because, it is possible for Tc released from one site in the oral cavity to influence other sites. It has been shown that following placement of tetracycline fibers, the drug is transiently detected in the serum or saliva\(^{50}\), which may effect the microbiological response. Tc was shown to be slowly released at concentrations higher than MIC and inhibit gingival inflammation and growth of bacteria in the oral cavity. Thus, the use of Tc-loaded membranes can result in improved clinical outcome from adjunctive antiinflammatory and antimicrobial effect of tetracycline on guided tissue regeneration using barrier membrane.

V. Acknowledgment

The authors wish to thank Mr. Lee SC, Miss Kim KH, and Dr. Ko YK for their help in technical assistance and preparing this manuscript.
VI. References

3. Gottlow J. Guided tissue regeneration using bioreabsorbable and nonresorbable devices: Initial healing and long-term results, J Periodontol 1993;64:1157-1165

4. Selvig KA, Nilveus RE, Fitzmorris L, Kersten BG, Khorsandi SS, Scanning electron microscopic observations of cell populations and bacterial contamination of membranes used for guided tissue regeneration in humans, J Periodontol 1990;61:515-520

19. Guillemin MR, Mellonig JT, Brunsvoold MA, Healing of periodontal defects treated by decalcified freeze-dried bone allografts in combina-
21. Demolon IA, Persson GR, Moncla Bj, Johnson RH, Ammons WF, Effects of antibiotic treatment on clinical conditions and bacterial growth with guided tissue regeneration, J Periodontol 1993;64:609-616
32. Socransky SS, Haffajee AD, Effect of therapy on periodontal infections J Periodontol 1993;64:754-759
37. Rifkin BR, Vernilo AT, Golub LM, Blocking periodontal disease progression by inhibiting tissue-destructive enzymes: A potential therapeutic role
40. Gomes BC, Golub LM, Ramamurthy N. Tetracyclines inhibit parathyroid hormone-induced bone resorption in organ culture, Experiencia 1984;40:1273-1275
43. Park YJ, Nam KH, Ha SJ, Pai CM, Chung CP, Lee SJ. Porous poly(L-lactide) membranes for guided tissue regeneration and controlled drug delivery: membrane fabrication and characterization, J Control Release 1997;43:151-160
44. Donath K, Breuner GA. A method for the study of undecalcified bones and teeth with attached soft tissues, J Oral Pathol 1982;11:318-326
47. Bennett JV, Brodie JC, Benner EJ, Kirby WMM. Simplified, accurate method for antibiotic assay of clinical specimens, Applied Microbiology 1966;14:170-177
56. Demolon IA, Persson GR, Ammons WF, Johnson RH. Effects of antibiotic treatment on clinical conditions with guided tissue regeneration.
57. Sander L, Frandsen EVG, Ambjerg D, Warrer K, Karring T, Effect of local metronidazole application on periodontal healing following guided tissue regeneration, Clinical Findings, J Periodontol 1994;65:713-717

실험적으로 치주염을 유발한 비글견에서 테트라싸이클린 함유 생분해성 차폐막의 항염효과

전형식, 설현주, 박윤정, 이용무, 구영, 류인철, 이승진, 한수부, 최상목, 권수정, 정종핑

1서울대학교 치과대학 치주과학과, 2이화여자대학교 약학대학, 3울산대학교 치과학교실

조직유도재생술 과정에 사용된 차폐막의 속후 오염 혹은 시술부위의 감염으로 조직재생유도가 제대로 이루어지지 않는 경우가 많이 있다. 테트라싸이클린은 넓은 범위의 치주 완인 균에 효과적이고, 증상구 교원부해효소를 억제함으로써 효과적으로 치료하기 때문에 전신적 혹은 국소적으로 치주치료를 용이하게 만드는데, 이번 연구의 목적은 비글견에 실험적으로 치주염을 유발시킨 후 테트라싸이클린 함유 차폐막을 이용하여 조직유도재생술을 하고서 테트라싸이클린의 유리반응을 관찰하는 결과와 테트라싸이클린에 의한 항염, 항균효과를 알아보는 것이다. 실험 2-3개월 전에 비글견의 구강에서 치조골 결손부를 형성하여 치주염을 유발시켰다. 결손부 형성 2-3개월 후 실험군으로 테트라싸이클린 함유 차폐막으로 조직유도재생술을 하였고, 대조군으로 테트라싸이클린이 함유되지 않은 차폐막으로 조직유도재생술을 하였으며, 임상들과는 협의하여 치조골 결손부를 형성하였다. 실험 전후 시술 후 1, 2, 4주 간격으로 치료기간, 치료지수, 치료외부내과의 항균 및 항미생균 세균과 항미생균 세균의 군마수를 측정하였다. 숭 후, 1, 3, 5, 7, 및 14일 간격으로 유리된 테트라싸이클린의 농도를 측정하였다. 테트라싸이클린 함유 차폐막은 임상적 치료지수는 숭 후 2, 4주째 치료지수는 1, 2, 4주째 유의하게 감소하였고(p<0.05) 1주에서 항미생균 및 항미생균 세균감편수는 테트라싸이클린 함유 차폐막을 사용한 균이 약물이 함유되지 않은 차폐막보다 유의성 있게 적었다. (p<0.001) 테트라싸이클린 함유 차폐막은 처음 1일은 높은 농도로 유리되었고 그 후 1주일 동안 일정하게 MIC 이상으로 유리되었다. 하지만 14일째는 유리가 관찰되지 않았다. 본 연구 결과, 테트라싸이클린 함유 생분해성 차폐막은 1주이상 약제가 MIC 이상 유리되었고, 유리된 테트라싸이클린에 의한 항염, 항균작용이 있어 치주조직재생유도술시 초기 치유가 잘 진행되도록 하는 효과가 있을 것이다.